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2. Near the Equator the sky is largely clouded and
precipitation in excess, apparently, of evaporation, the
excess coming from evaporation at higher latitudes.
This leads to more or less dilution, decrease of density,
and upwelling.

Both these causes, (1) and (2), are well known and
generally accepted. There is a third factor, however,
contributory to the result which I have not seen men-
tioned in this connection, namely:

3. The Ekman drift: As first shown by Ekman,® in
the case of deep water far from land a steady wind

roduces a surface drift 45° to the right in the Northern

emisphere, to the left in the Southern, of the direction
of the wind with reference to the moving surface. But
the velocity of the driving wind is thirty to thirty-five
times that of this surface, hence the direction of the
wind with reference to the water is substantially the
same as its geographic direction. Furthermore, the total
momentum of the moving water, mainly less than 50
meters deep, is at right angﬁes to the direction of the wind
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with reference to the adjacent water. Therefore, since
the equatorial winds generally are from the east, and
the winds of higher latitudes than 35° say, from the
west, the momentum of the resulting Ekman drift is
substantially poleward from low latitudes and equator-
ward from places beyond about 30° north and south.
This force evidently tends to pile up the surface water
along the belts between the oppositely-directed winds
and therefore is a contributing cause of the continuous
sinking of the water in these regions and its equally
continuous upwelling along the equatorial belt.

Finally, since on the whole the surface temperature
decreases from the Equator toward either pole, while
the surface sinking covers rather wide belts centered
roughly along latitudes 30° north and south, it follows
that, for a considerable distance down, the belts of
maximum temperature must recede from the Equator
with increase of depth, as shown in the figure.

The surprising distribution of ocean temperature de-
scribed above is, therefore, for the most part, an inter-
esting meteorological effect.

EFFECT OF LOCAL SMOKE ON VISIBILITY AND SOLAR RADIATION INTENSITIES

By Irving F. Hanp,

[Weather Burean, Washington, D. C., April 22, 1925)

The dense smoke cloud which covered the northwest
section of Washington on the morning of April 7, 1925,
was remarkable in so many respects that it is thought
worthy of a brief description.

On that date the sun rose in a cloud-free sky with
prospects for an excellent day for obtaining solar radia-
tion observations. Heavy frost, a minimum tempera-
ture of 32° F., and ice one-half inch in thickness were
recorded. .

When pyrheliometric readings were first made at
6:40 a. m. the Blue Ridge was plainly visible 50 miles
to the WSW. At that time little attention was paid to
the rather streaked layer of smoke which overhung the
business section of the city, as such layers are of somewhat
frequent occurrence. However, this one was rather
unusual in that its top was perfectly flat.

Half an hour later it became apparent that the solar
radiation observatory, which is located on the American
University campus, 5 miles NW. of the Capitol, would
soon become enveloped in a smoke cloud. Coincident
with the arrival of this cloud at 7:30 a. m., the visibility
diminished until at 8 o’clock, the time of maximum cov-
ering, it had decreased from 50 miles to three-quarters
of a mile.

Observations of the number of dust particles per
em.? taken at 8 a. m. and at noon give values of 7,077
and 166, respectively. This former value exceeds by 17
per cent the previous Washington maximum, obtained
at the Central Office of the Weather Bureau in January,
1924, while it is nearly three times the previous maxi-
mum obtained at the American University. It is approxi-
mately the number obtained in the I.oop District of
Chicago on a moderately smoky day—a statement which
means much to anyone familiar with that city. The
noon value, 166, is below the yearly average of all obser-
vations, and about the mean value obtained with a visi-
bility of 30 miles, which was that noted at the time.

An examination as to the character of the dust particles
showed that the first record obtained was composed
almost entirely of soot, unconsumed carbon, and other
products of combustion; many tiny glassy spheres with
an average diameter of about 0.0008 mm. being included

in the latter. The particles on the noon record were not
only smaller but showed almost no soot.
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Fia. 1.—Solar radition intensities, American University, D. C., April 7, 1925, showing
the effect of local smoke

As will be seen from Table 1, the visibility at noon
was but 30 miles as compared with 50 during the early
morning, but this is due, in part at least, to greater
diffusion of light with increaseg altitude of the sun and
to a background of clouds west of the Blue Ridge.
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The curved line on Figure 1 represents the trend of
solar radiation intensities measured at normal incidence
during the morning of the 7th, logarithms of intensities
(log. Q.) being 1}1) otted as abscisse against air mass
(approximately the secant of the sun’s zenith distance),
as ordinates. The broken line has been drawn by inter-
polation between the first and last series of observations,
taken before and after the passage of the smoke cloud,
respectively. Extrapolating this to zero air mass we
obtain for the value of log. Q., 0.2500, which indicates
that the line is representative of what would have been
expected with a smoke-free sky.

able 2 shows not only a decrease of 34 per cent at
air mass 2.68, but an actual diminution of 19 per cent with
decrease in air mass from 4 to 2.68, a rare occurrence in
Washington.

Considering that Washington is not a manufacturing
city, the localization of this smoke from heating plants,
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TABLE 2.—Solar radiation intensities, April 7, 192

(Gram-culories per min. per em.?)

Intensi- | Intensi-

tics ties from | Deerease
Air mass | measured| inter- due to
through | polated | smoke

smoke line

Per cent
118 1.49 1.49 0
1.58 1.33 1. 41 6
210 108 1.30 17
2.68 0.7y 1.19 34
4. G0 0.97 0.97 (]

cte., is most unusual; in fact, the smoke cloud was by
far the densest ever observed by the writer during the
10-year period he has been stationed at the American
University.

SEASONAL PRECIPITATION IN CALIFORNIA AND ITS VARIABILITY!

By BurtoN M. VARNEY

[U. 8. Weather Bureau, Washington, D. C.}
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PART 1
I. INTRODUCTION

1. Significance of the relations between precipitation
and water supply in Californie.—Probably in no State in
the Union is the water problem more pressing than in
California. Without going into extensive detail concern-
ing the intimacy of the relation between rainfall and
human activity there, it may he pointed out that the



